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(57) ABSTRACT

Systems and methods are provided for decoding data. A
decoder includes a syndrome memory, a state memory, and
decoding circuitry communicatively coupled to the syndrome
memory and the state memory. The decoding circuitry
retrieves data related to a symbol from the syndrome memory.
The decoding circuitry also retrieves data related to the sym-
bol from the state memory. The decoding circuitry processes
the data retrieved from the syndrome memory and the data
retrieved from the state memory to determine whether to
toggle a value of the symbol. The determination is based at
least in part on whether the symbol of the data being decoded
was previously toggled from an original state.
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1
METHODOLOGY FOR IMPROVED
BIT-FLIPPING DECODER IN 1-READ AND
2-READ SCENARIOS

CROSS REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/673,371, filed on Nov. 9, 2012 (now U.S. Pat.
No. 9,009,578), which claims the benefit under 35 U.S.C.
§119(e) of U.S. Provisional Application No. 61/558,768,
filed Nov. 11, 2011, both of which are hereby incorporated by
reference herein in their respective entireties.

BACKGROUND

The background description provided herein is for the pur-
pose of generally presenting the context of the disclosure.
Work of the inventors hereof, to the extent the work is
described in this background section, as well as aspects of the
description that may not otherwise qualify as prior art at the
time of filing, are neither expressly nor impliedly admitted as
prior art against the present disclosure.

The present disclosure relates generally to data decoding,
and more particularly to one-read and two-read decoders for
data encoded with a low density parity check (LDPC)
encoder.

LDPC codes and decoders that are used to decode LDPC
codes may be used in numerous applications and devices. For
example, data storage, satellite communications, wireless
communications, wire-line communications, and power-line
communications are applications that may each use LDPC
codes and LDPC decoders. Devices such as digital camera
flash memory storage, satellites, mobile phones, and other
mobile devices may also each use LDPC codes and LDPC
decoders.

LDPC codes may be used for correcting errors in informa-
tion transmitted in a noisy communications or data storage
channel. The information may be encoded (by a LDPC
encoder) prior to transmission and then subsequently
decoded (by a LDPC decoder) when received. The perfor-
mance capability of an LDPC coding scheme is often
described by the code’s performance curve. The performance
curve is a plot of signal-to-noise ratios (SNRs) vs. Bit Error
Rate (BER), or equivalently Sector Error Rate (SER). LDPC
codes are one of the best performing error correcting codes,
along with Turbo codes, for use in correcting errors in infor-
mation transmitted on communication and data storage chan-
nels.

Previous hard decoding LDPC algorithms typically decide
whether to flip a bit or symbol based on whether a given
number of checks are unsatisfied. Previous LDPC algorithms
typically do not use information related to prior bit-flipping or
toggling, and they typically do not use information on the
original or previous state of a symbol to decide whether to flip
or toggle the symbol.

SUMMARY

The present disclosure relates to a decoder for decoding
data. In some arrangements, the decoder includes a syndrome
memory, a state memory, and decoding circuitry communi-
catively coupled to the syndrome memory and the state
memory. The decoding circuitry retrieves data related to a
symbol from the syndrome memory. The decoding circuitry
also retrieves data related to the symbol from the state
memory. The decoding circuitry processes the data retrieved
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from the syndrome memory and the data retrieved from the
state memory to determine whether to toggle a value of the
symbol. The determination is based at least in part on whether
the symbol of the data being decoded was previously toggled
from an original state.

In some implementations, the state memory stores an indi-
cation of an original signal of the symbol, and the decoding
circuitry determines whether to toggle the value of the symbol
based on the original signal of the symbol. In other imple-
mentations, the state memory stores an indication of whether
the symbol has been previously toggled, and the decoding
circuitry determines whether to toggle the value of the symbol
based on whether the symbol has been previously toggled. In
other implementations, the state memory stores an indication
of whether a value of a symbol has been toggled within a
pre-specified number of preceding iterations, and the decod-
ing circuitry determines whether to toggle the value of the
symbol based on whether the symbol has been toggled within
the pre-specified number of preceding iterations.

In some implementations, the decoding circuitry deter-
mines whether to retrieve data from the state memory based
on the data retrieved from the syndrome memory, and the
decoding circuitry retrieves the data from the state memory in
response to determining to retrieve data from the state
memory. In such implementations, the syndrome memory
may include a plurality of check nodes related to the symbol.
Determining whether to retrieve data from the state memory
may comprise determining whether at least a number of the
plurality of check nodes indicate that a check is unsatisfied.
Determining whether to retrieve data from the state memory
may additionally or alternatively comprise determining
whether fewer than a number of the plurality of check nodes
indicate that a check is unsatisfied.

According to another aspect, the present disclosure relates
to a method for decoding data. The method involves receiving
data related to a symbol and processing the retrieved data to
determine whether to toggle a value of the symbol based at
least in part on whether the symbol was previously toggled
from an original state.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other features of the present disclosure,
including its nature and its various advantages, will be more
apparent upon consideration of the following detailed
description, taken in conjunction with the accompanying
drawings in which:

FIG. 1A shows an illustrative communications system
employing improved LDPC decoding in accordance with
some arrangements;

FIG. 1B shows an illustration of processing rules for
assigning hard decisions in a one-read implementation of the
detector of FIG. 1A in accordance with some arrangements;

FIG. 1C shows an illustration of processing rules for
assigning hard decisions and erasures in a two-read imple-
mentation of the detector of FIG. 1A in accordance with some
arrangements;

FIGS. 2A and 2B show a graphical illustration of commu-
nications between variable nodes representing symbols of a
received codeword and check nodes for decoding the received
codeword in accordance with some arrangements;

FIG. 3 A shows a flow chart for a processing rule for deter-
mining whether to toggle a variable node based in part on
whether the variable node was previously toggled, in accor-
dance with some arrangements;



US 9,300,328 B1

3

FIG. 3B shows a flow chart for a method of decoding a
received codeword by applying the processing rule shown in
FIG. 3A, in accordance with some arrangements;

FIG. 4A shows a hardware implementation for decoding a
received codeword by applying the processing rule shown in
FIG. 3A inwhich data stored in a received value state memory
is used to identify whether symbols of the codeword have
been previously toggled, in accordance with some arrange-
ments;

FIG. 4B shows a flow chart for a method of decoding a
received codeword using the hardware of FIG. 4A, in accor-
dance with some arrangements;

FIG. 5A shows a hardware implementation for decoding a
received codeword by applying the processing rule shown in
FIG. 3A in which data indicating whether symbols of the
codeword have been previously toggled is stored in a flip state
memory, in accordance with some arrangements;

FIG. 5B shows a flow chart for a method of decoding a
received codeword using the hardware of FIG. 5A, in accor-
dance with some arrangements;

FIG. 6A shows a two-read hardware implementation for
decoding a received codeword by applying the processing
rule shown in FIG. 3A in which data stored in a received
signal state memory is used to identify whether symbols of
the codeword have been previously toggled;

FIG. 6B shows a flow chart for a method of decoding a
received codeword using the hardware of FIG. 6A, in accor-
dance with some arrangements.

DETAILED DESCRIPTION

FIG. 1A shows an illustrative communications system for
LDPC decoding based in part on whether the data was previ-
ously toggled in accordance with some arrangements. A com-
munications system 100 is used to transmit information from
a transmitting user or application 102 to a receiving user or
application 130. The transmitting user or application 102
represents an object or entity that produces information. For
example, the transmitting user or application 102 may corre-
spond to a software program in a computer system or to a
component of a wireless communications transmitter in a
radio system. The transmitting user or application 102 pro-
duces information in the form of a data stream, and the data
stream may be represented by a sequence of symbol values
that have been pre-processed by, for example, a source
encoder (not shown in FIG. 1A). The information produced
by the transmitting user or application 102 may correspond to
voice information, video information, financial information,
or any other type of information that may be represented in
digital or analog form, and the data stream produced by
transmitting user or application 102 may be a digital data
stream.

The transmitting user or application 102 may segment or
otherwise divide the data stream into blocks of a fixed length
of'k symbols. In particular, a message 104, also referred to as
m, represents one of these blocks. In particular, the message
104 is k symbols in length, where each symbol may be binary
data, ternary data, quaternary data, any other suitable type of
data, or any suitable combination thereof. An encoder 106 is
used to encode the message 104 to produce a codeword 110.
In a preferred arrangement, the encoder 106 is an LDPC
encoder. However, based on the disclosure and teachings
provided herein, it should be clear that the encoder 106 may
be any other suitable encoder. The codeword 110, also
referred to as ¢, has a length of n symbols, where n>k. The
encoder 106 uses a generator matrix G 108, also referred to as
G for notational convenience, to produce the codeword 110.
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For example, the encoder 106 may perform one or more
matrix operations to convert the message 104 into the code-
word 110. In an arrangement, the encoder 106 produces the
codeword 110 from the message 104 using the generator
matrix G 108 by the following matrix multiplication

c=Gm.

The codeword 110 may be modulated or otherwise trans-
formed by a modulator 112 into a waveform suitable for
transmission and/or storage on a channel 114. For example,
the waveform may correspond to an analog Binary Phase-
Shift Keying (BPSK) signal, analog Phase-Shift Keying
(PSK) signal, analog Frequency-Shift Keying (FSK) signal,
analog Quadrature Amplitude Modulation (QAM) signal, or
any other suitable analog or digital signal.

The channel 114 refers to the physical medium through
which the transmitted waveform passes or is stored on before
being recovered at a demodulator 116. For example, the chan-
nel 114 may be a storage channel that represents a storage
medium in a computer system environment or a communica-
tions channel that represents the wireless propagation envi-
ronment in a wireless communications environment. Various
characteristics of the channel 114 may corrupt data that is
communicated or stored thereon. For example, the channel
114 may be anon-ideal memoryless channel or a channel with
memory. The output of the channel 114 is demodulated and
processed by the demodulator 116 to produce a received
codeword 118. The demodulator 116 may use frequency fil-
ters, multiplication and integration by periodic functions,
and/or any other suitable demodulation technique to demodu-
late and/or process the output of the channel 114.

The received codeword 118 contains information related to
the codeword 110 and may be a corrupted or otherwise altered
version of the codeword 110 originally output by the encoder
106. For example, the received codeword 118 may contain a
preliminary estimate or noisy version of the codeword 110, a
probability distribution vector of possible values of the code-
word produced by the encoder 106, or combinations of these
as well as other values.

A detector 120 is used to process the received codeword
118 to produce a detector sample 122, which is an estimate of
the original data message 104. The detector 120 samples each
symbol in the received codeword 118 and assigns each sym-
bol to a bin based on its value. In some arrangements, the bin
is assigned based on a probability distribution. Each symbol
sampled by the detector 120 is assigned to one of two or more
possible bins, or states. Rules for assigning the symbols into
one of two bins or states (0 and 1 states) are described in
relation to FIG. 1B. Rules for assigning the symbols into one
of three bins or states (-1, O (i.e., erasure), and 1 states) are
described in relation to FIG. 1C.

A decoder 124 receives and iteratively processes the detec-
tor sample 122. The detector 120 and the decoder 124 may be
two separate processors, or a single processor may be used as
boththe detector 120 and decoder 124. In general, the decoder
124 comprises control circuitry used to iteratively correct
and/or detect errors present in the detector sample 122, for
example, due to transmission through the channel 114. In
some arrangements, the decoder 124 uses the parity check
matrix H 126 and a decoding algorithm to produce a decoded
message 128. In general, LDPC decoding can be described
using a mathematical vector model He=0, in which ¢ is a
binary string of length n and H is the parity check matrix H
126, which is a low-density, sparse nxk matrix, wherein, as
above, n is the number of symbols in the codeword and k is the
number of symbols in the message. The model is satisfied
only when the binary string ¢ is the codeword ¢ 110. The
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parity check matrix H 126 is not necessarily unique, and may
be chosen to be computationally convenient and/or to
decrease the number of errors generated by the decoding
algorithm of the decoder 124.

The iterative decoding algorithm used by the decoder 124
involves processing a detector sample 122 by toggling or
flipping symbols in the detector sample 122 based on whether
checks of the symbol are satisfied or unsatisfied and based on
whether the symbol has been toggled or flipped before. As
used herein, symbols are “flipped” if they can alternate
between two possible values, e.g., 0 and 1. As used herein,
symbols are “toggled” if they can alternate between two or
more possible values, e.g., between 0 and 1 or between -1, 0
(erasure), and 1.

After processing, each symbol in the decoded message 128
should be assigned as one of two binary states. When input
into the model He=0 as ¢, the decoded message 128 satisfies
the model. Suitable algorithms for performing the decoding
are described in relation to FIG. 2A through FIG. 6B.

The decoded message 128 is delivered to the receiving user
or application 130 after being processed by the decoder 124.
The receiving user or application 130 may correspond to the
same device or entity as the transmitting user or application
102, or the receiving user or application 130 may correspond
to a different device or entity. Further, the receiving user or
application 130 may be either co-located or physically sepa-
rated from the transmitting user or application 102. If the
decoder 124 corrects all errors that are induced by the channel
114 and other communications effects in the communications
system 100, then the decoded message 128 is a logical replica
of the message 104. Otherwise, the decoded message 128
may differ from the message 104, and the decoder 124 may
declare an error accordingly.

FIG. 1B shows an illustration of processing rules for
assigning hard decisions at the detector of FIG. 1A in accor-
dance with one-read arrangements. The detector 120 accesses
each symbol of the received codeword 118 stored in memory
in order to determine and/or store an input state of each
symbol. In FIG. 1B, two input states are shown: 0 and 1.
These states correspond to the two bins 140 and 142 shown in
FIG. 1B. To determine to which bin the symbol should be
assigned, the actual received value is compared a threshold
T,. These thresholds may be predetermined.

As an example, to determine the input state of a given
symbol stored in a Flash memory storage device, the memory
cell in which the received value of the symbol is stored is read
once. In particular, the decoder 124 reads the memory cell and
compares the charge stored in that cell to a first threshold T, .
If the stored charge is less than T, the stored charge of the
symbol falls into the left region 140, and the detector 120
stores a value of 0 as the input state of that symbol. If the
charge is greater than T |, the stored charge of the symbol falls
into the right region 142, and the detector 120 stores a value
of'1 as the input state of that symbol. The input states deter-
mined for the detector sample 122 are stored in memory as
variable nodes or symbols of the sampled codeword. This
memory is termed the “hard decision memory”, which may
be in a different memory location from the memory location
of the received codeword 118.

FIG. 1C shows an illustration of processing rules for
assigning hard decisions and erasures at the detector of FIG.
1A in accordance with two-read arrangements. The detector
120 accesses each symbol of the received codeword 118
stored in memory in order to determine and/or store an input
state of each symbol. In FIG. 1C, three input states are shown:
-1, 0 (i.e., “erased”), and 1. These states correspond to the
three bins 150, 152, and 154 shown in FIG. 1C. To determine
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6

to which bin the symbol should be assigned, the actual
received value is compared to two thresholds T; and T,. These
thresholds may be predetermined.

As an example, to determine the input state of a given
symbol stored in a Flash memory storage device, the memory
cell in which the received value of the symbol is stored may be
read once or twice. First, the decoder 124 reads the memory
cell and compares the charge stored in that cell to a first
threshold T,. If the stored charge is less than T, the stored
charge of'the symbol falls into the leftmost region 150 and the
detector 120 stores a value of -1 as the input state of that
symbol. If the charge is greater than T, the detector 120 reads
the memory cell a second time and compares the stored
charge to a second threshold T,. If the stored charge is greater
than T,, the stored charge of the symbol falls into the right-
most region 154 and the detector 120 stores a value of 1 as the
input state of that symbol. Otherwise, it is determined that the
stored charge is between T, and T ,; the symbol then falls into
the middle region 152 and the detector 120 stores the input
state of that symbol as “erased” or 0. The input states deter-
mined for the detector sample 122 are stored in memory as
variable nodes or symbols of the sampled codeword. This
memory is termed the “hard decision memory”, which may
bein a different memory location from the received codeword
118.

In some arrangements, each symbol is assigned to one of
more than three states. For example, there may be one or more
thresholds between T, and T,, and the erased state may be
separated into “high erase” and “low erase” states; “high
erase”, “middle erase”, and “low erase” states; and so forth. It
is the goal of the decoder 124 to assign a binary value (e.g., 0
or 1) to each ofthe symbols initially assigned to an erase state.
In general, if the thresholds cause too many symbols to be
erased, the decoding algorithm may not be able to efficiently
or accurately assign values to all of the erased symbols. On
the other hand, if too few symbols are erased, the original
assignments of the symbols may betoo error prone and hinder
the decoder 124. Thus, the two or more thresholds may be
optimized based on the received codeword 118.

FIGS. 2A and 2B show a graphical illustration of commu-
nications between variable nodes 220-234 representing a
sampled codeword and check nodes 200-210 for decoding the
codeword in accordance with some arrangements.

After the variable nodes 220-234 are assigned input states
or values using the detector 120 as described above in relation
to FIG. 1B or 1C, a check of the variable nodes is performed
by the detector 124 on a plurality of groups of variable nodes.
The detector 124 uses processing rules of a check algorithm to
determine a condition of a group of variable nodes. An indi-
cation of the determined condition is stored in syndrome
memory at a check node, such as check nodes 200-210. The
parity check matrix H 126 (FIG. 1) identifies which check
nodes store indications of the determined conditions for
which variable nodes. For example, for the nodes pictured in
FIGS. 2A and 2B, the parity check matrix H 126 may be as
follows:

- 0 O = O -
[ =
- o - o © -
- 0 O = = O
(=R - =
o O = O = -
[ S S .
— — — o © O
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Each row corresponds to one of the check nodes, and each
column corresponds to one of the variable nodes. The decoder
124 references the parity check matrix H 126 to identify
which variable nodes should be checked by a particular check
node. For example, for the check node 206, the decoder 124
determines that check node 206 stores the result of a check of
variable nodes 222, 224, 230, and 234 (i.e., the second, third,
sixth, and eighth variable nodes). Then, the decoder 124
retrieves the values stored in these variable nodes. For illus-
tration, the arrows in FIG. 2A indicate that the retrieved
values flow from the variable nodes 222, 224, 230, and 234 to
the check node 206, and the check node 206 may be consid-
ered to “check” the variable nodes 222, 224, 230, and 234. In
reality, the variable node values are retrieved by the decoder
124, which processes the values on behalf of the check node
206 according to the processing rules. From the values
received from the variable nodes 222, 224, 230, and 234, the
decoder 124 determines whether a given condition for the
check node 206 is satisfied or is unsatisfied. An indication of
whether the check node 206 is satisfied or unsatisfied (i.e., the
“syndrome value” of the check node) is stored in syndrome
memory, which stores syndrome values or indications of the
check nodes. In some cases in the two-read scenario, the
processor may receives values of “erased” from the variable
nodes and does not identify whether or not the condition of a
check node is satisfied. In such cases, the check node may
indicate that the check is undetermined. Exemplary process-
ing rules for determining the conditions of the check nodes in
a two-read scenario are discussed in U.S. patent application
Ser. No. 13/276,525, entitled “SYSTEMS AND METHODS
FOR PERFORMING BIT FLIPPING IN AN LDPC
DECODER” which is hereby incorporated by reference
herein in its entirety.

After the indications or syndrome values for the check
nodes 200-210 have been stored in the syndrome memory, the
values of the variable nodes 220-234 are updated based on the
values of the check nodes. The parity check matrix H 126 is
again used by the decoder 124 to determine which check
nodes should be accessed for a particular variable node. As
illustrated in FIG. 2B, for updating the variable node 224, the
parity check matrix H 126 given above indicates that check
nodes 200, 206, and 210 (i.e., the first, fourth, and sixth
variable nodes) should be referenced. Based on the indica-
tions of the referenced check nodes, the state of the variable
node 224 (e.g., 0 or 1 for a one-read scenario, or -1, 0, or 1 for
a two-read scenario) may be updated. In some arrangements,
the state of the variable node 224 may also be determined
based in part on whether the variable node 224 had previously
been updated, toggled, or flipped, as described in relation
with respect to FIGS. 3A to 6B.

If'the value of each variable node is assigned to one of three
or more states (e.g., in a two or more-read scenario), two or
more bits are used to store each assigned state. For example,
three-state input typically requires two-bit storage. However,
since two bits can store up to four states, storing the value of
each variable node in two dedicated bits is not memory effi-
cient. The storage can be reduced using a memory-combine
approach wherein multiple hard decision memory cells for
storing variable nodes are combined into blocks. In general,
the assigned states of G; variable nodes each having N pos-
sible states can be described by a minimum of N different
values. For example, if the values ofthree variable nodes each
assigned to one of three states are stored together in a single
block, the values of the variable nodes in the block can be
described by one of 3°=27 values. The number of bits needed
to store 27 different values, then, is log,(27)=4.755<5. The
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efficiency in this case is 5 bits+3 variable nodes=1.6667 bits/
node. This is superior to the 2 bits/node that would be required
without memory combining.

For greater efficiency in the three-state example, if the
block size is five nodes rather than three nodes, the values of
the variable nodes in the block can be described by one of
53=243 values. The number of bits needed to store 243 dif-
ferent values is log,(243)=7.928<8. The efficiency in this
case is 8 bits+5 variable nodes=1.6 bits/node.

Similarly, check nodes stored in syndrome memory can be
combined. In various arrangements, the check nodes can be
one of two states, three states, four states, or other number of
states. If the number of possible states is not a power of two,
for memory efficiency, the check nodes can be grouped into
blocks and combined, as described above.

FIG. 3A shows a flow chart for method 300 for applying a
processing rule used to determine whether to toggle a variable
node based in part on whether the variable node was previ-
ously toggled. At 302, the decoder 124 identifies a number of
satisfied and unsatisfied check nodes for a particular variable
node. As described in relation to FIG. 2B, for a given variable
node, the decoder 124 uses the parity check matrix H 126 to
determine which check nodes should be accessed. Then, for
the variable node being decoded, the decoder 124 retrieves
the check value of each check node indicated by the parity
check matrix H 126 and identifies the number of check values
that indicate a check is satisfied, the number of check values
that indicate a check is unsatisfied, or both. In two or more-
read scenarios, the decoder 124 may also identify the number
of check nodes that are undetermined or that store another
check value.

At 304, the decoder 124 identifies whether the variable
node has been toggled previously. For example, the decoder
124 may access a flip or toggle state memory that, for each
variable node, stores an indication of whether the variable
node has been flipped or toggled previously. In another
example, the decoder 124 accesses a received value state
memory or received signal state memory that stores the origi-
nal received value or signal of each symbol of the detector
sample 122; the decoder 124 then compares the original value
or signal to the current value ofthe variable node to determine
whether the variable node has been flipped or toggled. These
and other methods for identifying whether the variable node
has been flipped or toggled are described further in relation to
FIGS. 4A through 6B. In some embodiments, the decoder 124
only identifies whether the variable node has been toggled
previously in certain defined situations, e.g., if more than a
lower threshold of satisfied check values are retrieved at 302,
or if less than an upper threshold of unsatisfied checks are
retrieved at 302.

At 306, the decoder 124 determines whether to flip or
toggle the value of the variable node based on the check
values received at 302 and based on whether the variable node
has been previously flipped or toggled as determined at 304.
The decoder may determine whether to toggle the value ofthe
variable node based on the check values received at 302,
whether the variable node has been previously flipped or
toggled as determined at 304, or based on criteria relating to
both the check values and previous flipping or toggling. The
rules used for determining whether to flip or toggle the value
of the variable node may vary within a single decoding pro-
cess. Particular rules for determining whether to flip or toggle
the value of the variable node are described in relation to FIG.
4 A through 6B.

FIG. 3B shows a flow chart for a method 350 of decoding
a received codeword 118 by applying the processing rule
shown in FIG. 3A. At 352, the detector 120 reads the values of
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the received codeword 118 as described in relation to FIG. 1B
or 1C to generate a detector sample 122. At 354, the decoder
initializes a state memory, which stores data that indicates or
that can be used to determine whether variable nodes have
been previously flipped or toggled. At 358, the decoder ini-
tializes a hard decision (HD) memory by storing the original
values (for a one-read scenario) or signals (for a two or
more-read scenario) of the detector sample 122 in variable
nodes in the HD memory. At 360, the decoder 124 computes
syndromes based on the data stored in the HD memory as
described in relation to FIG. 2A, and the decoder 124 stores
the computed syndromes in check nodes in a syndrome
memory. At 356, the decoder 124 initializes the variable node
counter k=1; in the decoding process, the decoder 124 iterates
through each of the variable nodes in the detector sample 122,
where each variable node corresponds to a symbol of the
codeword being decoded.

At 362, the decoder 124 reads the syndromes stored in the
check nodes for symbol k of the codeword, as described in
relation to FIG. 2B. The decoder 124 may process the syn-
dromes to identify a number of satisfied checks, a number of
unsatisfied checks, or both, as described in relation to 302 of
FIG. 3A. At 364, the decoder 124 determines whether to
toggle symbol k based on the syndromes for symbol k. For
example, if the decoder 124 has received more than a first
pre-specified threshold of satisfied checks for symbol k, the
decoder 124 determines not to toggle symbol k. In this case,
the process proceeds to decision 378, discussed further below.
If the decoder 124 has received more than a second pre-
specified threshold of unsatisfied checks for symbol k, the
decoder 124 determines to toggle symbol k. In this case, the
process proceeds to 370, Toggle Symbol k. Finally, if neither
a condition to toggle symbol k nor a condition not to toggle
symbol k has been met, the decision 364 to toggle symbol k is
undetermined, and the decoder 124 proceeds to 366, Read
state for symbol k. For example, the decoder 124 may not be
able to determine whether to toggle symbol k if, for symbol k,
it has received less than the first threshold of satisfied checks
for symbol k and less than the second threshold of unsatisfied
checks for symbol k.

At 366, the decoder 124 reads the state information for
symbol k from the state memory. The state information stores
the original received value of each symbol of the detector
sample 122, the original received signal of each symbol of the
detector sample 122, an indication of whether each variable
node has been previously toggled, or any other information or
prior combination of information relating to prior values or
toggling of the variable nodes. At 368, the decoder 124 deter-
mines whether to toggle symbol k based on the received state
information for symbol k and the received syndromes for
symbol k. For example, if the decoder 124 has received more
than a third pre-specified threshold of satisfied checks for
symbol k and symbol k has not been toggled previously, the
decoder 124 may determine not to toggle symbol k and pro-
ceed to 378. As another example, if the decoder 124 has
received more than a fourth pre-specified threshold of unsat-
isfied checks for symbol k and symbol k has been toggled
previously, the decoder 124 may decide to toggle symbol k
and proceed to 370. Further decision rules for determining
whether to toggle a symbol are described in relation to FIGS.
4A through 6B.

If the decoder 124 decides at 364 or 368 to toggle symbol
k, at 370, symbol k is toggled. For a one-read scenario, tog-
gling symbol k involves switching from one binary value to
the other binary value, e.g., switching from 1 to 0 or from 0 to
1. In higher-read scenarios, symbol k could be toggled
between hard-decisions (e.g., 1 and 0) and any number of
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erasure states as dictated by the number of reads used and by
the toggling decision rules. At 372, the decoder 124 updates
the syndrome memory to reflect the value of the toggled
variable node. In particular, the syndrome for of each check
node that checks the variable node for symbol k is recom-
puted, and the values of those check nodes are updated. In
some embodiments, e.g., if the state memory stores an indi-
cation of whether a symbol has been toggled, the state
memory for symbol k is updated at 374.

At 378, the decoder 124 determines whether k equals the
codeword length, i.e., that the process of 362 through 374 has
been performed on each variable node in the detector sample
122 and the end of the detector sample 122 has been reached.
If the end of the detector sample 122 has not been reached, k
is incremented, and the process of 362 through 374 is per-
formed on the following variable node (i.e., the following
symbol k) in the detector sample.

Note that the decoder 124 does not access the state memory
for symbol k unless the decoder 124 cannot determine
whether to toggle symbol k from the syndromes for symbol k
accessed at 362. Thus, the decoder 124 is not required to
access the state memory in each step. This requires less power
than ifthe state memory were read in every step. Furthermore,
the decoder 124 would not read the state memory during the
first iteration through the detector sample 122, since none of
the symbols in the detector sample 122 would have been
toggled yet.

Once the end of the detector sample 122 has been reached,
at 380, this indicates the end of one iteration of the decoding
process. At this point 380, the decoder 124 determines
whether the decoding process has converged. In some
arrangements, this means that the conditions of all of the
check nodes are satisfied. In other arrangements, where outer
error correction codes may be present, conditions for conver-
gence are relaxed, and a minimum amount of error (e.g., a
minimum amount of erased variable nodes or a minimum
amount of unsatisfied check nodes) is permitted. If the
decoder 124 has converged, at 382, it is determined that the
decoder 124 succeeded. The decoder 124 then outputs the
decoded message 128 to the receiving user or application 130.
It the decoder 124 did not converge, at 384, k is reset to 1, and
in some arrangements, at 386, the toggling rules are updated
for the following iteration through the detector sample 122.
Various flipping and toggling rules and the updating of the
flipping and toggling rules are described further in relation to
FIGS. 4A through 6B.

In some arrangements, if the decoder 124 did not converge,
before resetting k at 384 and iterating through the detector
sample 122 again, the decoder 124 determines whether an
iteration number j is less than a maximum number of itera-
tions j,,,,.- If the iteration number j is less than the maximum
number ofiterationsj,,,,., the process continues to 384 and the
variable nodes are processed again. If the iteration number j is
not less than the maximum number of iterations j,,,., the
method terminates. After terminating, the decoder 124 may
output the result of the decoding to the receiving user or
application 130. Additionally or alternatively, the decoder
124 or the receiving user or application 130 can request that
the transmitting user or application 102 retransmit the code-
word 110. The decision of whether to accept the message or
request the message be resent may be based on the degree to
which the decoder 124 determines that the decoded message
128 is incorrect.

FIG. 4A shows a decoder hardware implementation 400
for decoding a detector sample 122 that was generated
through a single-read process, such as the single-read process
described in relation to FIG. 1B. The hardware implementa-
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tion 400 includes three memories 402, 404, and 414, a com-
pare/flip logic device 408, a convergence monitor 406, and
several XOR gates 420 and 422, and shifters 410 and 416,

The detector sample 122 is stored in a hard-decision (HD)
memory 402 in variable nodes, each of which stores a binary
value (e.g., 1 or 0). The original values of the detector sample
122 are also stored in a received value state memory 404. The
received value state memory 404 is one suitable implemen-
tation of a state memory as described in relation to FIG. 3B.
Indications of determined conditions are stored in a syndrome
memory 414 at check nodes, as described in relation to FIG.
2A.

Compare/flip logic 408 is a device for determining whether
to flip or toggle the symbol stored at a particular variable
node, e.g., based on the processing rule of FIG. 3A. The
compare/flip logic 408 is communicatively coupled to the
received value state memory 408 so that the received values
can be used to determine whether or not to flip or toggle a
particular variable node. The compare/flip logic 408 also can
receive signals from the syndrome memory 414 via shifters
410 so that the syndromes indicated by the check nodes can be
used to determine whether or not to flip or toggle a particular
variable node.

In particular, the compare/flip logic 408 determines, for a
particular variable node, whether, based on the check nodes
for that variable node, that variable node should be flipped/
toggled. For example, in the single-read arrangements
described in FIG. 1B, based on check node processing rules,
the compare/flip logic 408 may determine that the variable
node should be flipped (as described above in relation to 364
of FIG. 3B). In that instance, the compare/flip logic 408
outputs a “1”to the XOR gate 420. Then, the “1” output by the
compare/flip logic 408 is XORed with the current value of the
variable node received at the XOR gate 420 from the HD
memory 402. This causes the opposite value from current
value of the variable node to be output from the XOR gate 420
and stored to the variable node in the HD memory 402, thus
flipping the variable node. If, based on the check node pro-
cessing rules, the compare/flip logic 408 determines that the
variable node should not be flipped (as described above in
relation to 364 of FIG. 3B), the compare/flip logic 408 outputs
a“0”to the XOR gate 420. Accordingly, when the 0 output by
the compare/flip logic 408 is XORed with the current value of
the variable node, the same value as current value of the
variable node is output from the XOR gate 420 and stored to
the variable node in the HD memory 402, so the variable node
is not flipped.

If'the compare/flip logic 408 cannot determine whether the
variable node should be flipped based on the check node
processing rules, the compare/flip logic 408 accesses the
received value of that variable node from the received value
state memory 404, as described above in relation to 364 and
366 of FIG. 3B. The compare/flip logic 408 compares the
received value of the variable node to the current value of the
variable node to determine whether the variable node has
been flipped. The compare/flip logic 408 determines whether
to flip the variable node and outputs a 1 to flip or a 0 to not flip,
as discussed above. Particular rules for determining when to
flip the variable node are described in relation to FIG. 4B.

Convergence monitor 406 is a device for determining,
based on the conditions stored in the check nodes of the
syndrome memory 414, whether the decoder 400 has con-
verged, as described in relation to 380 of FIG. 3B.

FIG. 4B shows a flow chart for a method 450 of decoding
a codeword using the hardware of FIG. 4A. At 452, the
received states of the detector sample 122 are stored in the HD
memory 402 and in the received value state memory 404. At
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454, the iteration number j is initialized to 0; the iteration
number j is incremented each time the decoder 400 iterates
through all of the variable nodes in the HD memory 402. At
456, with j=0, the decoder 400 computes the syndromes
based on the values of the variable nodes and stores the
syndromes in check nodes in the syndrome memory 414. At
458, the decoder 400 increments j=j+1. At 460, the decoder
400 compares j to a threshold j,;,., to determine whether to
use the left-branch flipping rules (462-472) or to use the
right-branch flipping rules (478-490). In this embodiment,
the left-branch flipping rules do not utilize data stored in the
received value state memory 404, whereas the right-branch
flipping rules do involve the received value state memory 404.
In some arrangements, j,;,..=2, and the left-branch is only
used in the first iteration when the received value state
memory 404 would not be meaningful since the received
values are the same as the variable node values (i.e., no
variable nodes have yet been flipped). In other arrangements,
Jsnres 18 greater than 2. In addition, while FIG. 4B shows two
branches with flipping rules, in other arrangements, more
branches of flipping rules may be used.

1fj<,,,. at 462, the decoder 400 initializes a variable node
counter k=1, which is similar to the counter k described in
relation to FIG. 3B. At 464, after receiving data from the
syndrome memory 414 identifying which check nodes for
variable node k are satisfied and which are unsatisfied, the
compare/flip logic 408 determines whether the number of
unsatisfied checks is greater than or equal to a first given
threshold U,,,,...,, . For example, if each variable node is con-
nected to 4 checknodes, U, may be 4, so that the value of
avariable node is only flipped if all four checks of the variable
node are unsatisfied.

Ifthe compare/flip logic 408 determines that the number of
unsatisfied checks is greater than or equal to the first given
threshold U .., at 466, the compare/flip logic 408 flips the
symbol k by outputting a “1”, as described in relation to FIG.
4A. At 468, the decoder 400 then updates the syndromes
stored in the check nodes of syndrome memory 414 based on
the new value of the flipped variable node. At470, the decoder
400 determines whether the variable node counter k has
reached the length of the codeword; if, at 464, the compare/
flip logic 408 determined that the number of unsatisfied
checks is not greater than or equal to the first given threshold
U resn1s the decoder 400 moves immediately to 470. If k is
less than the length of the codeword, then at 472, the decoder
400 increments k and returns to 464. Ifk is equal to the length
of the codeword, then at 474, the convergence monitor 406
determines, based on the data stored in the syndrome memory
414, whether the decoder 400 has converged. If the decoder
400 has converged, at 476, the decoder 400 has succeeded.
The decoder 400 then outputs the decoded message 128 to the
receiving user or application 130. If the decoder 400 has not
converged, at 458, the iteration number j is incremented, and
jis compared to j,,,.. at 460.

If, at 460, j is not less than j,;,,.., then at 478, the decoder
400 initializes a variable node counter k=1, which is similar to
the counter k described in relation to FIG. 3B. At 480, after
receiving data from the syndrome memory 414 identifying
which check nodes for variable node k are satisfied and which
are unsatisfied, the compare/flip logic 408 determines
whether the number of unsatisfied checks is greater than or
equal to a second given threshold U, ... For example, if
each variable node is connected to 4 check nodes, U, >
may be 3, so that the value of a variable node is flipped if three
or four of the four checks of the variable node are unsatisfied.

Ifthe compare/flip logic 408 determines that the number of
unsatisfied checks is greater than or equal to the second given
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threshold U,,,.;,», at 484, the compare/flip logic 408 flips the
symbol k by outputting a “1”, as described in relation to FIG.
4A. At 486, the decoder 400 then updates the syndromes
stored in the check nodes of syndrome memory 414 based on
the new value of the flipped variable node. At 488, the decoder
400 determines whether the variable node counter k has
reached the length of the codeword. Ifk is less than the length
of the codeword, then at 490, the decoder 400 increments k
and returns to 480.

If, at 480, the compare/flip logic 408 determines that the
number of unsatisfied checks is not greater than or equal to
than the second given threshold U, ... then at 482, the
compare/flip logic 408 determines whether the number of
unsatisfied checks is greater than or equal to a third given
threshold U,,..,; AND, based on data received from the
received value state memory 404, whether the current value of
the variable node (i.e., the current symbol value) is different
from its original received value, which indicates that the
variable node has been flipped before. If both of these condi-
tions are met, the compare/flip logic 408 flips the symbolk by
outputting a “1”, as described in relation to FIG. 4A, and, at
486, the decoder 400 updates the syndromes as described
above. If one or both of the aforementioned conditions of
decision 482 are not met, the process proceeds to 488 to
determine whether the end of the codeword has been reached.

Once, at 488, the decoder 400 determines that k is equal to
the length of the codeword, then at 474, the convergence
monitor 406 determines, based on the data stored in the syn-
drome memory 414, whether the decoder 400 has converged.
Ifthe decoder 400 has converged, at 476, the decoder 400 has
succeeded. The decoder 400 then outputs the decoded mes-
sage 128 to the receiving user or application 130. If the
decoder 400 has not converged, at 458, the iteration number j
is incremented.

FIG. 5A shows a second decoder hardware implementation
500 for decoding a detector sample 122 that was generated
through a single-read process, such as the single-read process
described in relation to FIG. 1B. The hardware implementa-
tion 400 includes three memories 502, 504, and 514, a com-
pare/flip logic device 508, a convergence monitor 506, and
several XOR gates 520, 522, and 524, and shifters 510 and
516.

The detector sample 122 is stored in a hard-decision (HD)
memory 502 as variable nodes, each of which stores a binary
value (e.g., 1 or 0). Indications of determined conditions are
stored in a syndrome memory 514 at check nodes, as
described in relation to FIG. 2A. The flip state memory 504
stores information relating to whether a variable node has
been flipped before. The flip state memory 504 is one suitable
implementation of a state memory as described in relation to
FIG. 3B.

In some arrangements, once a variable node has been
flipped, the flip state memory 504 stores an indication that the
variable node has been flipped and does not change or reset
this indication for the remainder of the decoding process. In
some arrangements, the flip state memory 504 stores an indi-
cation of whether each variable node has been flipped within
a set number of iterations. For example, the flip state memory
504 can store an indication of whether each variable node has
been flipped in the most recent iteration through the variable
nodes; in one such arrangement, if a variable node is flipped,
a location in the flip state memory 504 corresponding to that
variable node is set to “1”, and if the variable node is not
flipped, a location in the flip state memory 504 corresponding
to that variable node is set to “0”.

In other arrangements, the flip state memory 504 stores an
indication of whether each variable node has been flipped in
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the mostrecent N iterations. For example, for a single variable
node, the flip state memory may store a “flipped” marker and
an iteration counter. If a variable node is flipped, the “flipped”
marker is set to 1 and the iteration number is set to 0. Each
time the decoder 500 decides not to flip the variable node, the
iteration number is incremented. Once the iteration number
reaches N, the “flipped” marker is set to 0.

In the arrangement shown in FIG. 5A, if a variable node is
flipped once, the previous flip state corresponding to the
variable node is XORed with the flip instruction (i.e.,a “1”) at
XOR gate 524. This causes the opposite value of the previous
flip state corresponding to the variable node to be returned
and stored in the flip state memory 504. In this arrangement,
if the variable node is flipped a second time, the flip state will
be the same as if the variable node had never been flipped.

If the variable node is flipped before N is reached, the
iteration counter for that variable node is reset to 0. Still other
rules can be used recording the flip history of each variable
node in the flip state memory 504, and the rules used (e.g., the
number of iterations N through which a variable node is
marked as “flipped”) may change during the decoding pro-
cess. The decoder 500 may alternatively send data to the flip
state memory 504 without passing it through an XOR gate or
XORing the toggle instructions with the previous toggle state.

Compare/flip logic 508 is a device for determining whether
to flip a particular variable node, e.g., based on the processing
rule of FIG. 3A. The compare/flip logic 508 is communica-
tively coupled to the flip state memory 504 so that the
received values can be used to determine whether or not to flip
a particular variable node. The compare/flip logic 508 also
can receive signals from the syndrome memory 514 via
shifters 510 so that the syndromes indicated by the check
nodes can be used to determine whether or not to flip a
particular variable node.

In particular, the compare/flip logic 508 determines, for a
particular variable node, whether, based on the check nodes
for that variable node, that variable node should be flipped. If,
based on check node processing rules, the compare/flip logic
508 determines that the variable node should be flipped (as
described above in relation to 364 of FIG. 3B), the compare/
flip logic 408 outputs a “1” to the XOR gate 520. Then, the “1”
output by the compare/flip logic 508 is XORed with the
current value of the variable node received at the XOR gate
520 from the HD memory 502. This causes the opposite value
from current value of the variable node to be output from the
XOR gate 520 and stored to the variable node in the HD
memory 502, thus flipping the variable node. If, based on the
check node processing rules, the compare/flip logic 508
determines that the variable node should not be flipped (as
described above in relation to 364 of FIG. 3B), the compare/
flip logic 508 outputs a “0” to the XOR gate 520. Accordingly,
when the 0 output by the compare/flip logic 508 is XORed
with the current value of the variable node, the same value as
current value of the variable node is output from the XOR gate
520 and stored to the variable node in the HD memory 502, so
the variable node is not flipped.

Ifthe compare/flip logic 508 cannot determine whether the
variable node should be flipped based on the check node
processing rules, the compare/flip logic 508 accesses the flip
information for that variable node from the flip state memory
504, as described above in relation to 364 and 366 of FIG. 3B.
The compare/flip logic 508 uses the prior flipping informa-
tion for the variable node to determine whether to flip the
variable node. Based on the determination, the compare/flip
logic outputs a 1 to flip the variable node or a 0 to not flip the
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variable node, as discussed above. Particular rules for deter-
mining when to flip the variable node are described in relation
to FIG. 5B.

Convergence monitor 506 is a device for determining,
based on the conditions stored in the check nodes of the
syndrome memory 514, whether the decoder 500 has con-
verged, as described in relation to 380 of FIG. 3B.

FIG. 5B shows a flow chart for a method 550 of decoding
a codeword using the hardware of FIG. 5A. At 552, the
received states of the detector sample 122 are stored in the HD
memory 502. At 554, the iteration number j is initialized to 0;
the iteration number j is incremented each time the decoder
500 iterates through all of the variable nodes in the HD
memory 502. At 556, the flip state memory 504 is initialized.
For example, a set of values in which each value corresponds
to one of the variable nodes can all be set to “O” to indicate
that the corresponding variable nodes have not been flipped.
At 558, with j=0, the decoder 500 computes the syndromes
based on the values of the variable nodes and stores the
syndromes in check nodes in the syndrome memory 514. At
560, the decoder 500 increments j=j+1. At 562, the decoder
500 compares j to a threshold j,;,.. to determine whether to
use the left-branch flipping rules (564-576) or to use the
right-branch flipping rules (582-596). In this embodiment,
the left-branch flipping rules do not utilize data stored in the
flip state memory 504, whereas the right-branch flipping rules
do involve the flip state memory 504. In some arrangements,
Jures—2, and the left-branch is only used when the flip state
memory 504 would not be meaningful since none of the
variable node have been flipped. In other arrangements, j,;,,..
is greater than 2. In addition, while FIG. 5B shows two
branches with flipping rules, in other arrangements, more
branches of flipping rules may be used.

5<,1705» at 564, the decoder 500 initializes a variable node
counter k=1, k is similar to the counter k described in relation
to FIG. 3B. At 566, after receiving data from the syndrome
memory 514 identifying which check nodes for variable node
k are satisfied and which are unsatisfied, the compare/flip
logic 508 determines whether the number of unsatisfied
checks is greater than or equal to a first given threshold
U resn1 - For example, if each variable node is connected to 4
check nodes, U,,,,;,, may be 4, so that the value of a variable
node is only flipped if all four checks of the variable node are
unsatisfied.

If'the compare/flip logic 508 determines that the number of
unsatisfied checks is greater than or equal to the first given
threshold U ,,...;1, at 568, the compare/flip logic 508 flips the
symbol k by outputting a “1”, as described in relation to FIG.
5A. At570, the decoder 500 updates the flip state memory 504
to indicate that the variable node has been flipped. For
example, the decoder 500 may flip the k” symbol (which
corresponds to the k” variable node) in the flip state memory
504. As described above in relation to FIG. 5A, the decoder
500 may also reset an iteration counter corresponding to the
variable node. The decoder 500 may store or update any other
information relating to whether and when the variable node
was flipped in the flip state memory 504.

At 572, the decoder then updates the syndromes stored in
the check nodes of syndrome memory 514 based on the new
value of the flipped variable node. At 574, the decoder 500
determines whether the variable node counter k has reached
the length of the codeword; if, at 566, the compare/flip logic
408 determined that the number of unsatisfied checks is not
greater than or equal to the first given threshold U,,,,...;,;, the
decoder 500 moves immediately to 574. If k is less than the
length of the codeword, then at 576, the decoder 500 incre-
ments k and returns to 566. If k is equal to the length of the
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codeword, then at 578, the convergence monitor 506 deter-
mines, based on the data stored in the syndrome memory 514,
whether the decoder 500 has converged. If the decoder 500
has converged, at 580, the decoder 500 has succeeded. The
decoder 500 then outputs the decoded message 128 to the
receiving user or application 130. If the decoder 500 has not
converged, at 560, the iteration number j is incremented, and
j is compared 10 j,j,.. at 562.

If, at 562, j is not less than j,,,., then at 582, the decoder
500 initializes a variable node counter k=1; k is similar to the
counter k described in relation to FIG. 3B. At 584, after
receiving data from the syndrome memory 514 identifying
which check nodes for variable node k are satisfied and which
are unsatisfied, the compare/flip logic 508 determines
whether the number of unsatisfied checks is greater than or
equal to a second given threshold U, ;.. For example, if
each variable node is connected to 4 check nodes, U,,,.,>
may be 3, so that the value of a variable node is flipped if three
or four of the four checks of the variable node are unsatisfied.

If the compare/flip logic 508 determines that the number of
unsatisfied checks is greater than or equal to the second given
threshold U, at 588, the compare/flip logic 408 flips the
symbol k by outputting a “1”, as described in relation to FIG.
5A. At590, the decoder 500 updates the flip state memory 504
to indicate that the variable node has been flipped. For
example, the decoder 500 may flip the k” symbol (which
corresponds to the k? variable node) in the flip state memory
504. As described above in relation to FIG. 5A, the decoder
500 may also reset an iteration counter corresponding to the
variable node. The decoder 500 may store or update any other
information relating to whether and when the variable node
was flipped in the flip state memory 504.

At 592, the decoder 500 updates the syndromes stored in
the check nodes of syndrome memory 514 based on the new
value of the flipped variable node. At 592, the decoder 500
determines whether the variable node counter k has reached
the length of the codeword. If k is less than the length of the
codeword, then at 596, the decoder 500 increments k and
returns to 480.

If, at 584, the compare/flip logic 508 determines that the
number of unsatisfied checks is not greater than or equal to
than the second given threshold U, ., then at 586, the
compare/flip logic 508 determines whether the number of
unsatisfied checks is greater than or equal to a third given
threshold U,,,,.,; and, based on data received from the flip
state memory 504, the variable node has been flipped before
or has been flipped within a pre-determined number of prior
of'iterations. If both of these conditions are met, the compare/
flip logic 508 flips the symbol k by outputting a “1”, as
described in relation to FIG. SA. At 490, the decoder updates
the flip state memory 504 as described above, and at 592, the
decoder 400 updates the syndromes as described above. If
one or both of the aforementioned conditions of decision 586
are not met, the process proceeds to 594 to determine whether
the end of the codeword has been reached.

Once, at 594, the decoder 500 determines that k is equal to
the length of the codeword, then at 578, the convergence
monitor 506 determines, based on the data stored in the syn-
drome memory 514, whether the decoder 500 has converged.
If'the decoder 500 has converged, at 580, the decoder 500 has
succeeded. The decoder 500 then outputs the decoded mes-
sage 128 to the receiving user or application 130. If the
decoder 500 has not converged, at 560, the iteration number j
is incremented.

FIG. 6A shows a decoder hardware implementation 600
for decoding a detector sample 122 that was generated
through a multi-read (i.e., two or more-read) process as
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described, for example, in relation to FIG. 1C. The hardware
implementation 600 includes three memories 602, 604, and
614, a compare/toggle logic device 608, a convergence moni-
tor 606, and several XOR gates 620 and 622, and shifters 610
and 616.

The detector sample 122 is stored in a hard-decision (HD)
memory 602 as variable nodes, each of which stores a binary
value (e.g., 1 or 0) or erasure data. The original signals of the
detector sample 122 are also stored in a received signal state
memory 604. The received signal state memory 604 is one
suitable implementation of a state memory as described in
relation to FIG. 3B. In other arrangements, the received signal
state memory 604 is replaced by a toggle state memory, which
is similar to the flip state memory 504 described in relation to
FIG. 5A, except that the toggle state memory stores data
identifying whether and, in some cases, when variable nodes
have been toggled. Indications of determined conditions are
stored in a syndrome memory 614 at check nodes, as
described in relation to FIG. 2A.

Compare/toggle logic 608 is a device for determining
whether to toggle the signal stored at a particular variable
node, e.g., based on the processing rule of FIG. 3A. The
compare/toggle logic 608 is communicatively coupled to the
received signal state memory 604 so that the received signals
can be used to determine whether or not to toggle a particular
variable node. The compare/toggle logic 608 also can receive
signals from the syndrome memory 614 and shifters 610 so
that the syndromes indicated by the check nodes can be used
to determine whether or not to toggle a particular variable
node.

In particular, the compare/toggle logic 608 determines, for
aparticular variable node, whether, based on the check nodes
for that variable node, that variable node should be toggled to
a different value. If, based on check node processing rules, the
compare/toggle logic 608 determines that the variable node
should be toggled (as described above in relation to 364 of
FIG. 3B), the compare/toggle logic 608 outputs a toggled
value to the XOR logic 620.

If the compare/toggle logic 608 cannot determine whether
the variable node should be toggled based on the check node
processing rules, the compare/toggle logic 608 accesses the
received signal of that variable node from the received signal
state memory 604, as described above in relation to 364 and
366 of FIG. 3B. The compare/toggle logic 608 compares the
received signal of the variable node to the current value of the
variable node to determine whether the variable node has
been toggled. The compare/toggle logic 608 determines
whether to toggle the variable node and outputs a toggled
value. Particular rules for determining when to toggle the
variable node are described in relation to FIG. 6B. In other
arrangements, the compare/toggle logic 608 may access prior
toggling information from a toggle state memory, described
above.

Convergence monitor 606 is a device for determining,
based on the conditions stored in the check nodes of the
syndrome memory 614, whether the decoder 600 has con-
verged, as described in relation to 380 of FIG. 3B.

FIG. 6B shows a flow chart for a method 650 of decoding
a codeword using the hardware of FIG. 6A. At 652, the
received states of the detector sample 122 are stored in the HD
memory 602 and in the received signal state memory 604. At
654, the iteration number j is initialized to 0; the iteration
number j is incremented each time the decoder 600 iterates
through all of the variable nodes in the HD memory 602. At
656, with j=0, the decoder 600 computes the syndromes
based on the values of the variable nodes and stores the
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syndromes in check nodes in the syndrome memory 614. At
658, the decoder 600 increments j=j+1.

At 660, the decoder 600 compares j to a first threshold
Jresn1 t0 determine whether to use the left-branch toggling
rules (662) or to use the right-branch toggling rules (668-
672). If the decoder 600 determines to use the right-branch
toggling rules (668-672), the decoder then compares j to a
second threshold j,;,....» to determine whether to use the tog-
gling rules of 670 or the toggling rules of 672. In effect, the
decoder 600 chooses between three sets of toggling rules 662,
670, and 672. The decoder 600 may apply these sets of tog-
gling rules 662, 670, and 672 by iterating through the variable
nodes in the HD memory 602 as described in relation to FIGS.
4B and 5B. In FIG. 6B, the choice of toggling rules is based
on the iteration number j. In other embodiments, the choice of
toggling rules can be based on other factors, such as the
amount of error in the detector sample 122 (e.g., the number
of erased variable nodes or the number of unsatistied check
nodes), or any combination of factors. In addition, while FIG.
6B shows three sets of toggling rules, 662, 670, and 672, in
other arrangements, fewer sets or more sets of toggling rules
may be used.

I < 5051 at 662, the compare/toggle logic 608 applies a
first set of toggling rules to each variable node in the HD
memory 602. According to the exemplary first set of decoding
rules shown at 662, any variable node with at least a threshold
Q of corresponding unsatisfied checks received from the syn-
drome memory 614 should be toggled. In addition, any vari-
able node with at least another threshold R of corresponding
unsatisfied checks received from the syndrome memory 614
should be toggled if the initial signal for the variable node
received from the received signal state memory 604 was 0 or
erasure, as defined in FIG. 1C.

If j2j 001 A0 JG 0525 at 670, the compare/toggle logic
608 applies a second set of toggling rules to each variable
node in the HD memory 602. According to the exemplary
second set of decoding rules shown at 670, any variable node
with atleast a threshold S of corresponding unsatisfied checks
received from the syndrome memory 614 should be toggled.
In addition, any variable node with at least another threshold
T of corresponding unsatisfied checks received from the syn-
drome memory 614 should be toggled if the initial signal for
the variable node received from the received signal state
memory 604 was 0 or erasure, as defined in FIG. 1C. Further,
any variable node with at least another threshold W of corre-
sponding unsatisfied checks received from the syndrome
memory 614 should be toggled if the variable node has been
toggled before. The compare/toggle logic 608 can determine
whether a variable node has been toggled before by compar-
ing the signal from the received signal state memory 604
corresponding to the variable node to the current signal of the
variable node stored in the HD memory 602. In other arrange-
ments, the compare/toggle logic 608 receives prior toggling
information from a toggle state memory, described above.

If j2j,0 01 @0 j2] 0052, at 672, the compare/toggle logic
608 applies a third set of toggling rules to each variable node
in the HD memory 602. According to the exemplary third set
of decoding rules shown at 672, any variable node with at
least a threshold X of corresponding unsatisfied checks
received from the syndrome memory 614 should be toggled.
In addition, any variable node with at least another threshold
Y of corresponding unsatisfied checks received from the syn-
drome memory 614 should be toggled if the initial signal for
the variable node received from the received signal state
memory 604 was 0 or erasure, as defined in FIG. 1C. Further,
any variable node with at least another threshold Z of corre-
sponding unsatisfied checks received from the syndrome
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memory 614 should be toggled if the variable node has been
toggled before. The compare/toggle logic 608 can determine
whether a variable node has been toggled before by compar-
ing the signal from the received signal state memory 604
corresponding to the variable node to the current signal of the
variable node stored in the HD memory 602. In other arrange-
ments, the compare/toggle logic 608 accesses prior toggling
information from a toggle state memory, described above.

In some arrangements, the relationships between the
thresholds described in relation to 662, 670, and 672 are as
follows:

Jorestihres2
Q>R
S>T=W
X>Y=Z

Q=8=X

The above relations are not restricted; in other arrange-
ments, alternative relationships between the thresholds can
exist.

After all of the variable nodes in HD memory 602 have
been processed according to the selected set of toggling rules
662, 670, or 672, at 664, the syndrome memory 614 is
updated. In some arrangements, the syndrome memory 614
may be updated each time a variable node is toggled, as
described in relation to FIGS. 4B and 5B. At 674, the conver-
gence monitor 606 determines, based on the data stored in the
syndrome memory 614, whether the decoder 600 has con-
verged. If the decoder 600 has converged, at 676, the decoder
600 has succeeded. The decoder 600 then outputs the decoded
message 128 to the receiving user or application 130. If the
decoder 600 has not converged, at 658, the iteration number j
is incremented, and j is compared to j,;,,.. at 660.

The above described arrangements and embodiments are
presented for the purposes of illustration and not of limitation.
One or more parts of techniques described above may be
performed in a different order (or concurrently) and still
achieve desirable results. In addition, the techniques of the
disclosure may be implemented in hardware, such as on an
application specific integrated circuit (ASIC) or on a field-
programmable gate array (FPGA). The techniques of the
disclosure may also be implemented in software, or in a
combination of hardware and software.

What is claimed is:

1. A decoder comprising:

a memory; and

decoding circuitry configured to:

retrieve data related to a symbol from the memory; and

process the data to determine whether to toggle a value
of the symbol based at least in part on whether the
symbol was previously toggled.

2. The decoder of claim 1, wherein the memory is a first
memory and the decoder further comprises a second memory
configured to store data related to toggles of the symbol.

3. The decoder of claim 2, wherein the decoding circuitry
determines whether to toggle the value of the symbol based
on the data retrieved from the first memory.

4. The decoder of claim 1, wherein the decoding circuitry is
further configured to determine whether to toggle the value of
the symbol based on an original value of the symbol.

5. The decoder of claim 1, wherein the decoding circuitry is
further configured to determine whether to toggle the value of
the symbol based on a number of times that the symbol has
been previously toggled.
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6. The decoder of claim 1, wherein the decoding circuitry is
further configured to determine whether to toggle the value of
the symbol based on whether the symbol has been toggled
within a predetermined number of preceding iterations.

7. The decoder of claim 1, wherein the memory is a first
memory, the decoder comprises a second memory, and the
decoding circuitry is further configured to:

toggle the value of the symbol, in response to determining

that the value of the symbol should be toggled; and
update the second memory to indicate that the value of the
symbol was toggled.

8. The decoder of claim 1, wherein:

the memory comprises a plurality of check nodes related to

the symbol; and

the decoding circuitry determines whether to toggle the

value of the symbol based on whether at least a number
of the plurality of check nodes indicates that a check is
unsatisfied.

9. The decoder of claim 1, wherein:

the memory comprises a plurality of check nodes related to

the symbol; and

the decoding circuitry determines whether to toggle the

value of the symbol based on whether fewer than a
number of the plurality of check nodes indicates that a
check is unsatisfied.

10. The decoder of claim 1, wherein:

the decoding circuitry determines whether to toggle the

value ofthe symbol based on a first decision rule in a first
iteration and based on a second decision rule in a second
iteration.

11. A method comprising:

retrieving, using decoding circuitry, data related to a sym-

bol from a memory; and

processing the data to determine whether to toggle a value

of the symbol based at least in part on whether the
symbol was previously toggled.

12. The method of claim 11, wherein the memory is a first
memory and the method further comprises:

storing data related to toggles of the symbol in a second

memory.

13. The method of claim 12, wherein determining whether
to toggle the value of the symbol is based on the data retrieved
from the first memory.

14. The method of claim 11, wherein determining whether
to toggle a value of the symbol is based on an original value of
the symbol.

15. The method of claim 11, wherein determining whether
to toggle a value of the symbol is based on a number of times
that the symbol has been previously toggled.

16. The method of claim 11, wherein determining whether
to toggle the value of the symbol is based on whether the
symbol has been toggled within a predetermined number of
preceding iterations.

17. The method of claim 11, wherein the memory is a first
memory, the method further comprising:

toggling the value of the symbol, in response to determin-

ing that the value of the symbol should be toggled; and
updating a second memory to indicate that the value of the
symbol was toggled.

18. The method of claim 11, wherein the memory com-
prises a plurality of check nodes related to the symbol, the
method further comprising:

determining whether to toggle the value of the symbol

based on whether at least a number of the plurality of
check nodes indicates that a check is unsatisfied.
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19. The method of claim 11, further comprising:

determining whether to toggle the value of the symbol
based on a first decision rule in a first iteration and based
on a second decision rule in a second iteration.

20. A decoder comprising circuitry configured to:

retrieve data related to a symbol; and

process the retrieved data to determine whether to toggle a
value of the symbol based at least in part on whether the
symbol was previously toggled from an original state.
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